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A FAMILY OF EXACT SOLUTIONS OF THE EQUATIONS OF THE ONE-DIMENSIONAL NOTION 
OF A GAS UNDER THE INFLUENCE OF MONOCHROMATIC RADIATION* 

A.N. ZHELTUKHIN 

A new family of exact solutions with a linear dependence of the velocity on the spatial 
coordinate is constructed for the equations of the non-stationary motion of an ideal gas taking 
account of the absorption of monochromatic radiation. The solutions contain some arbitrary 
functions and some arbitrary constants. Exact solutions without radiation are known /l, 2/. 
Taking account of the absorption of monochromatic radiation, the problem was developed in /3/, 
and exact selfsimilar solutions were found. Unlike these solutions, we construct below sol- 
utions that contain some arbitrary functions. 

The one-dimensional. motion of an ideal gas, taking account of the absorption of mono- 
chromatic radiation, is described by the system of equations 

"t + uur -I- p-'pr = 0, Pt + UPt + p (u,$ w-b)= 0 
pt + UP, -t- YP (z+ -I- vr-lu) = (V - 1) kf, jr + vr-'j = kj 

(1) 

where p is the density, p is the pressure, u is the velocity, Y is the constant ratio of the 
specific heats, j is the intensity of the counter-radiation (the flow of radiant energy through 
a unit area in unit time) and k is the absorption coefficient, Y= O,l, 2 for plane, cylin- 
drical and spherical symmetry, respectively. Here, we do not take account of the thermal 
conductivity or viscosity of the gas, the radiation of the medium or the scattering of radiant 
energy (see /3, 4/j. 

Let G(r), f(t) be arbitrary functions of their arguments, and let c be an arbitrary con- 
stant. We can ascertain that the formula 
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il = rp - p1. 11 = -p-“p’ + p-‘pl 

p = pv(l+v) p*Gvl (2) + cpv(l+“), p + Z-‘p’+v,, (2) 

j = (y-t)-‘Q(‘*“)“-’ [G (a)+ r-‘j(t)]&*, k = 
v%,(z) 

G (4 +r-'f (t) 

(a dot indicates differentiation with respect to time t) with the additional condition pl=O 
for Y= 1,2, defines an exact solution of Eq.(l). 

If we set p* = const, we obtain a class of exact solutions of the radiationless equations 
of gas dynamics. 

Me will give some example. 
lo. If we set pI = 0, I(% = eons& we obtain Sedov's family of exact solutionsofthe equations 

of gas dynamics ilf, which has 
2O. Setting 

in the plane case, we have the 
radiation that are used in the 
arbitrary constants) 

2 

been applied in a number of problems /2, 4/. 

exact solutions of equations of hydrodynamics (11, without 
theory of detonations (D is the wave velocity and b, c are 

p=q++_&jY, j=o. 

3O. Let p>O be an arbitrary function of t in the plane case, h= 
2 (p’) ‘1, G(z) = sa7 a is a number, a@--l)+O. Then Eqs.(2) are obeyed and accordingto formula 
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(3) we have 

The suggestion to look for exact solutions of (1) with a linear dependenceofthevelocity 
on the spatial coordinate was made by V.P. Korobeinikov. 
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THE INFLUENCE TENSOR FOR AN ELASTIC MEDIUM WITH 
POISSON'S RATIO VARYING IN ONE DIRECTION* 

S.YA. MAKOVENKO 

We construct an analogue of the known Kelvin-Somigliana tensor for an 
unbounded elastic medium with a Poisson's ratio that varies in one 
direction and a constant shear modulus. We deduce the corresponding 
force tensor. We also consider the effect of the temperature. The 
effect of inhomogeneity is demonstrated by examples. 

1. Initial relations. We can attach the following form to the resolving equations 
of the linear theory of elasticity of the inhomogeneous medium under consideration in a 
Cartesian coordinate system Zi (i = i, 2,3)/2/: 

am = -%,1 - %,% + %,., A.n = -%,z + %,I (i.i, 

dk = (i - vf-' [ysr i- v f%,, + Qt,,,) + (i + v) a61 - % (i-2) 
(Xi = %py'@'i (i = 1, 2). x, = 2p@'J,s*f . 

Here mrk, n are resolving potential functions, Xi are components of the volume force 
vector, @i are arbitrary volume force potential functions, e is the temperature, a is the 
coefficient of linear expansion, v is Poisson's ratio, p is the shear modulus, A is the 
Laplace operator and 7% is the two-dimensional Laplace operator (in the variables I% and 23. 
Partial derivatives are indicated by a comma followed by the index of the correspondingvariable. 

The components of the dislocation vector Ui and the stress tensor ail are expressed in 
terms of the potential functions according to the formulae 

W = (k + m),i + Veipen,p - bim,d 

“iJ = 2p ((k + ‘@,ij + eJ,,s”ejp -1 etps”,pj - &m,,J - ‘&‘“,,j + 

(I- 2~)~’ [VA (k + m) - Zwn,,- fi + vfae]} 

(4.3) 

(&y is the Kronecker delta and aif* are components of the Levi-Civita tensor). 
In the relations we have noted, Poisson's ratio is everywhere taken to be an arbitrarily 

differentiable or, in the yeneral case, partially-differentiable function of one variable =a, 
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